老铁们,大家好,相信还有很多朋友对于解一元二次方程和一元二次方程的求根公式的相关问题不太懂,没关系,今天就由我来为大家分享分享解一元二次方程以及一元二次方程的求根公式的问题,文章篇幅可能偏长,希望可以帮助到大家,下面一起来看看吧!
一元二次方程的解法有哪些
一元二次方程有四种解法:直接开平方法;配方法;公式法;因式分解法。解一元二次方程的基本思想方法为通过“降次”将它化为两个一元一次方程。
形如x²=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。如果方程化成x²=p的形式,那么可得x=±√p。如果方程能化成(nx+m)²=p(p≥0)的形式,那么nx+m=±√p,进而得出方程的根。
2、配方法:用配方法解方程ax²+bx+c=0(a≠0),先将常数c移到方程右边,将二次项系数化为1,方程两边分别加上一次项系数的一半的平方,方程左边成为一个完全平方式。
3、公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a,b,c的值代入求根公式就可得到方程的根。
4、因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
公元前300年左右,古希腊的欧几里得(Euclid)(约前330年~前275年)提出了用一种更抽象的几何方法求解二次方程。古希腊的丢番图(Diophantus)(246~330)在解一元二次方程的过程中,却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。
公元628年,印度的婆罗摩笈多(Brahmagupta)(约598~约660)出版了《婆罗摩修正体系》,得到了一元二次方程
公元820年,阿拉伯的阿尔·花剌子模(al-Khwārizmi)(780~810)出版了《代数学》。
书中讨论到方程的解法,除了给出二次方程的几种特殊解法外,还第一次给出了一元二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。他把方程的未知数叫做“根”,后被译成拉丁文(radix)。其中涉及到六种不同的形式,令a,b,c为正数,如
把二次方程分成不同形式作讨论,是依照丢番图的做法。
法国的韦达(1540~1603)除推出一元方程在复数范围内恒有解外,还给出了根与系数的关系
参考资料来源:百度百科-一元二次方程
参考资料来源:百度百科-一元二次方程解法
一元二次方程怎样解
1、x=[-b±根号﹙b²-4ac﹚]/﹙2a﹚
2、用求根公式解一元二次方程的方法叫做求根公式法。
3、用求根公式法解一元二次方程的一般步骤为:
4、①把方程化成一般形式,确定a,b,c的值(注意符号);
5、②求出判别式的值,判断根的情况;
6、③在的前提下,把a、b、c的值代入公式
7、含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。
8、适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。每个二元一次方程都有无数对方程的解,由二元一次方程组成的二元一次方程组才可能有唯一解,二元一次方程组常用加减消元法或代入消元法转换为一元一次方程进行求解。
9、将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法。
10、用代入消元法解二元一次方程组的一般步骤:
11、(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形式;
12、(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;
13、(3)解这个一元一次方程,求出x的值;
14、(4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解;
15、(5)把这个方程组的解写成的形式.
解一元二次方程公式
一元二次方程的一般形式为:ax²+ bx+ c= 0,其中a、b、c为常数,且a≠0。
解一元二次方程的公式为:x=(-b±√(b²- 4ac))/ 2a
其中,±表示两个根,即正根和负根;√表示平方根;b²- 4ac被称为“判别式”,根据判别式的值可以判断方程有一个根、两个不相等的根或者无实根。
如果判别式b²- 4ac>0,则方程有两个不相等的实根,即x1=(-b+√(b²-4ac))/(2a),x2=(-b-√(b²-4ac))/(2a)。
如果判别式b²- 4ac=0,则方程有一个实根,即x=-b/(2a)。
如果判别式b²- 4ac<0,则方程无实根,但可以用复数表示,即x1=(-b+i√|b²-4ac|)/(2a),x2=(-b-i√|b²-4ac|)/(2a),其中i为虚数单位。
通过分析古巴比伦泥板上的代数问题,可以发现,在公元前2250年古巴比伦人就已经掌握了与求解一元二次方程相关的代数学知识,并将之应用于解决有关矩形面积和边的问题。相关的算法可以追溯到乌尔第三王朝。在发现于卡呼恩(Kahun)的两份古埃及纸草书上也出现了用试位法求解二次方程的问题。
公元前300年前后,活跃于古希腊文化中心亚历山大的数学家欧几里得(Euclid)所著的《几何原本》(Euclid’s Elements)中卷II命题5、命题6以及卷VI命题12、命题13的内容相当于二次方程的几何解。
继欧几里得之后,亚历山大数学发展第二次高潮“白银时代”的代表人物丢番图发表了《算术》(Arithmetica)。该书出现了若干二次方程或可归结为二次方程的问题。这足以说明丢番图熟练掌握了二次方程的求根公式,但仍限于正有理根。不过他始终只取一个根,如果有两个正根,他就取较大的一个。
中国古代数学很早就涉及二次方程问题。在中国传统数学最重要的著作《九章算术》中就已涉及相关问题。因此可以肯定,二次方程及其解法自东汉以来就已为人们所熟知了。
解一元二次方程的公式
1、解一元二次方程的公式是ax2+bx+c=0。
2、只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
3、一元二次方程成立必须同时满足三个条件:
4、①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
文章到此结束,如果本次分享的解一元二次方程和一元二次方程的求根公式的问题解决了您的问题,那么我们由衷的感到高兴!